Preliminary communication

Cationic oxygen adducts from rhodium and iridium carbonyl salts

L.M. HAINES and E. SINGLETON

National Chemical Research Laboratory, South African Council for Scientific and Industrial Research, Pretoria (Republic of South Africa)

(Received March 8th, 1971)

The reactions of $[IrCl(CO)L_2]$ $[L = P(CH_3)_2C_6H_5$ and $As(CH_3)_2C_6H_5]$ with the ligands, L, in methanol in the presence of the anions, ClO_4^- or $B(C_6H_5)_4^-$, have been reported to give ionic derivatives of the type, $[Ir(CO)L_4]$ [anion]¹. The five-coordinate diand tricarbonyl salts, $[Ir(CO)_2L_3]$ [anion] and $[Ir(CO)_3L_2]$ [anion] respectively, have also been prepared by similar reactions involving carbon monoxide^{1,2}.

We now find that warming a suspension of $[RhCl(CO)L_2]$ $[L = P(C_2H_5)_2C_6H_5$ and $P(CH_3)(C_6H_5)_2]$ in hot methanol with the ligand L followed by addition of the anions PF_6^- or $B(C_6H_5)_4^-$, gives the four-coordinate salts, $[Rh(CO)L_3]$ [anion]. In contrast, the corresponding reactions involving $[RhCl(CO)L_2]$ $[L = P(CH_3)_2C_6H_5$ and $As(CH_3)_2C_6H_5]$ give the five-coordinate cationic derivatives, $[Rh(CO)L_4]$ [anion]. It is probable that steric repulsions between the ligands, L, constitutes the governing factor in determining whether four- or five-coordinate cations form in the above reactions.

The iridium(III) hydride $\{IrHCl(CO)[P(CH_3)_2C_6H_5]_3\} B(C_6H_5)_4$, has previously been obtained by the addition of HCl to $\{Ir(CO)[P(CH_3)_2C_6H_5]_4\} B(C_6H_5)_4$ ¹. We find that the salts $[IrHCl(CO)L_3]$ [anion] $[L = P(CH_3)_2C_6H_5$ and $As(CH_3)_2C_6H_5$; anion = $B(C_6H_5)_4^-$ or PF_6^-], of configuration I, are more readily prepared by treating $[IrHCl_2(CO)L_2]$ (configuration II)¹ or $[IrHCl_2(CO)_2]_x \cdot H_2O$ (x probably = 2) with one or three moles of the ligand, L, per iridium atom respectively, in hot methanol in the presence of suitable large anions.

The complexes $[Ir(CO)L_4] B(C_6H_5)_4 [L = P(CH_3)_2C_6H_5 \text{ or } As(CH_3)_2C_6H_5]$ are formed¹ in the same way as the rhodium analogues. They also form readily in ca. 40% yield, however, by the dehydrohalogenation of the hydrocarbonyl salts $[IrHCl(CO)L_3]$ [anion] [anion = PF_6^- or $B(C_6H_5)_4^-$] with triethylamine in cold oxygen-free acetone solution. The isolation of these salts is effected by adding degassed [with N₂] ethanol to the acetone solution and bubbling off the acetone with a stream of nitrogen. The yield of the fivecoordinate monocarbonyls can be increased to ca. 70% by performing the above reactions in the presence of excess ligand, L.

Corresponding salts of formula $[Ir(CO)L_3]PF_6$ (L = P(CH₃)(C₆H₅)₂ or P(C₂H₅)₂C₆H₅] are obtained by the addition of three moles of L, per iridium atom, to a suspension of the cyclooctene complex $[IrCl(CO)(C_8H_{14})_2]_2$ in hot methanol, in the presence of PF₆⁻ ions.

J. Organometal. Chem., 30 (1971) C81-C83

Compound	ν (M-H) cm ⁻¹	ν (CO) cm ⁻¹	$v(0-0) \text{ cm}^{-1}$
$ \begin{cases} Ir(CO)[P(C_2H_5)_2C_6H_5]_3] PF_6 \\ (Ir(CO)[P(CH_3)(C_6H_5)_2]_3] PF_6 \\ (Rh(CO)[P(CH_3)_2C_6H_5]_3] B(C_6H_5)_4 \\ (Rh(CO)[PCH_3(C_6H_5)_2]_3] PF_6 \\ (Rh(CO)[P(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Rh(CO)[As(CH_3)_2C_6H_5]_3] PF_6 \\ (IrHCl(CO)[As(CH_3)_2C_6H_5]_3] B(C_6H_5)_4 \\ (Ir(O_2)[P(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Ir(O_2)[As(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Rh(O_2)[P(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Rh(O_2)[P(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Rh(O_2)[As(CH_3)_2C_6H_5]_4] B(C_6H_5)_4 \\ (Rh(O_2)[A$	2125	1990 1998 1992 2015 1922 1938 2039	obscured ^b 838 852 856

TABLE I

IR DATA ON SOME RHODIUM AND IRIDIUM SALTS²

a Measured in nujol mulls. b Overlapping anion resonances.

A solution of the complexes $[M(CO)L_4]B(C_6H_5)_4$ [M = Rh or Ir; L = $P(CH_3)_2C_6H_5$ or As $(CH_3)_2C_6H_5$], in acetone reacts rapidly with air to give stable oxygen adducts, $[M(O_2)L_4]B(C_6H_5)_4$, which can be precipitated from solution by the addition of methanol. A decomposition of this type in solution has also been reported for a ruthenium carbonyl complex³.

These oxygen derivatives, with the exception of $\{Ir(O_2)[As(CH_3)_2C_6H_5]_4\}B(C_6H_5)_4$, are more readily prepared, however, by treating the cyclooctadiene complexes $[(C_8H_{12})MCl]_2$ $[M = Rh^4$ or Ir], with the ligands, L, in hot methanol, in air and precipitating the adduct $[M(O_2)L_4]^+$, formed with $B(C_6H_5)_4^-$ ions. For the salt $\{Ir(O_2)[As(CH_3)_2C_6H_5]_4\}B(C_6H_5)_4$, the cyclooctene complex $[(C_8H_{14})_2IrCl]_2$ was used in place of $[C_8H_{12}IrCl]_2$ in the above reactions.

The structures proposed for the complexes I–IV (Fig.1) are based upon their ¹H NMR spectra (Table 2). For structures I and II their ¹H NMR spectra were identical with those previously reported for these complexes (see ref. 1). The proton NMR spectrum of III consists of two sharp singlets in the ratio of 1/3 which are ascribed to the methyl groups on the arsine ligands L₁ and L₂, respectively. For IV (M = Ir), the methyl resonances of the mutually *cis*-phosphines (L) in the salt $\{Ir(O_2)[P(CH_3)_2C_6H_5]_4\}B(C_6H_5)_4$ were observed as a sharp doublet and those on the mutually *trans*-phosphines (L') as a sharp triplet, consistent⁵ with the structure proposed. The corresponding arsine complex $\{Ir(O_2)[As(CH_3)_2C_6H_5]_4\}B(C_6H_5)_4$ contains two sharp singlets in the ratio of 1/1 corresponding to the methyl resonances of the arsine ligands L and L'.

Fig.1. Proposed stereochemistry for the rhodium and iridium complexes. I and II, $L = P(CH_3)_2C_6H_5$ and $As(CH_3)_2C_6H_5$; III, $L_1 = L_2 = As(CH_3)_2C_6H_5$; IV, $M = Rh^4$ and Ir, $L = L' = P(CH_3)_2C_6H_5$ and $As(CH_3)_2C_6H_5$ (These oxygen complexes can also be envisaged as octahedral MIII salts.)

J. Organometal. Chem., 30 (1971) C81-C83

PRELIMINARY COMMUNICATION

Compound	Solvent CDCl ₃ CH ₂ Cl ₂	Methyls of L	
{Rh(CO)[As(CH ₃) ₂ C ₆ H ₅] ₄ }B(C ₆ H ₅) ₄ {Ir(O ₂){P(CH ₃) ₂ C ₆ H ₅] ₄ }B(C ₆ H ₅) ₄		8.60 s (1) 8.72 s (3) 8.28 d (1) 8.59 t (1) $J(PH)$ 9 Hz ${}^{2}J(PH)$ + ${}^{4}J(PH)$ a 8 Hz	
{Ir(O ₂)[As(CH ₃) ₂ C ₆ H ₅] ₄ }B(C ₆ H ₅) ₄	CDCl ₃	8.41 s (1) 8.60 s (1)	

TABLE 2 ¹H NMR DATA ON SOME RHODIUM AND IRIDIUM SALTS

^a Separation of the outer peaks of the 1/2/1 triplet⁶; s, singlet; d, doublet; t, triplet. Ratios of peaks in brackets.

A few oxidative addition reactions to some of these complexes have been completed, e.g. {Rh(CO)[P(C₂H₅)₂C₆H₅]₃} B(C₆H₅)₄ reacts with iodine to give the neutral complex, {RhI₃(CO)[P(C₂H₅)₂C₆H₅]₂}, while the corresponding reaction involving {Ir(O₂)[P(CH₃)₂C₆H₅]₄} B(C₆H₅)₄ similarly yields a neutral product, IrI₃ [P(CH₃)₂C₆H₅]₃.

REFERENCES

1 A.J. Deeming and B.L. Shaw, J. Chem. Soc., A, (1970) 3356 and references therein.

2 M.J. Church, M.I. Mays, R.N.F. Simpson and F.P. Stefanini, J. Chem. Soc., A. (1970) 2909.

3 K.R. Laing and W.R. Roper, Chem. Commun., (1968) 1556.

4 L.M. Haines, Inorg. Chem., submitted for publication.

5 J.M. Jenkins and B.L. Shaw, J. Chem. Soc., A, (1966) 1407.

6 R.K. Harris, Can. J. Chem., 42 (1964) 2275.

J. Organometal. Chem., 30 (1971) C81-C83