Preliminary communication

Cationic oxygen adducts from rhodium and iridium carbonyl salts

L.M. HAINES and E. SINGLETON
National Chemical Research Laboratory, South African Council for Sciantific and Inàusfrial Research, Pretoria (Republic of South Africa)

(Received March 8th, 1971)

The reactions of $\left[\mathrm{IrCl}(\mathrm{CO}) \mathrm{L}_{2}\right]\left[\mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]$ with the ligands, L , in methanol in the presence of the anions, ClO_{4}^{-}or $\mathrm{B}_{\mathbf{C}} \mathrm{C}_{6} \mathrm{H}_{5}^{--}$, have been reported to give ionic derivatives of the type, $\left[\operatorname{Ir}(\mathrm{CO}) \mathrm{L}_{4}\right]$ [anion $]^{1}$. The five-coordinate diand tricarbonyl salts, $\left[\operatorname{Ir}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]$ [anion] and $\left[\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ [anion] respectively, have also been prepared by similar reactions involving carbon monoxide ${ }^{1,2}$.

We now find that warming a suspension of $\left[\mathrm{RhCl}(\mathrm{CO}) \mathrm{L}_{2}\right]\left[\mathrm{L}=\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ in hot methanol with the ligand L followed by addition of the anions PF_{6}^{-}or $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}^{-}$, gives the four-coordinate salts, $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{3}\right.$] [anion]. In contrast, the corresponding reactions involving [$\mathrm{RhCl}(\mathrm{CO}) \mathrm{L}_{2}$] [$\mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$] give the five-coordinate cationic derivatives, $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{L}_{4}\right]$ [anion]. It is probable that steric repulsions between the ligands, L, constitutes the governing factor in determining whether four- or five-coordinate cations form in the above reactions.

The iridium(III) hydride $\left\{\operatorname{IrHCl}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{3}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$, has previously
 that the salts $\left[\mathrm{IrHCl}(\mathrm{CO}) \mathrm{L}_{3}\right]$ [anion] $\left[\mathrm{L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$; anion $=$ $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}^{-}$or PF_{6}^{-}], of configuration I , are more readily prepared by treating [$\mathrm{IrHCl}_{2}(\mathrm{CO}) \mathrm{L}_{2}$] (configuration II) ${ }^{1}$ or $\left[\operatorname{IrHCl}_{2}(\mathrm{CO})_{2}\right]_{x} \cdot \mathrm{H}_{2} \mathrm{O}(x$ probably $=2)$ with one or three moles of the ligand, L, per iridium atom respectively, in hot methanol in the presence of suitable large anions.

The complexes $\left[\mathrm{Ir}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\left[\mathrm{~L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ or $\left.\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]$ are formed ${ }^{1}$ in the same way as the rhodium analogues. They also form readily in ca. 40% yield, however, by the dehydrohalogenation of the hydrocarbonyl salts $\left[\mathrm{IrHCl}(\mathrm{CO}) \mathrm{L}_{3}\right]$ [anion] [anion $=\mathrm{PF}_{\delta}^{-}$or $\left.\mathrm{B}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}^{-}\right\}$with triethylamine in cold oxygen-free acetone solution. The isolation of these salts is effected by adding degassed [with N_{2}] ethanol to the acetone solution and bubbling off the acetone with a stream of nitrogen. The yield of the fivecoordinate monocarbonyls can be increased to ca. 70% by performing the above reactions in the presence of excess ligand, L.

Corresponding salts of formula $\left[\operatorname{Ir}(\mathrm{CO}) \mathrm{L}_{3}\right] \mathrm{PF}_{6}\left(\mathrm{~L}=\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ or $P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$] are obtained by the addition of three moles of L , per iridium atom, to a suspension of the cyclooctene complex $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}$ in hot methanol, in the presence of PF_{6}^{-}ions.

TABLE I
IR DATA ON SOME RHODIUM AND IRIDIUM SALTS ${ }^{a}$

Compound	$v(\mathrm{M}-\mathrm{H}) \mathrm{cm}^{-1}$	$\nu(\mathrm{CO}) \mathrm{cm}^{-1}$	$v(0-0) \mathrm{cm}^{-1}$
\{ $\mathrm{Ir}\left(\mathrm{CO}\right.$) $\left.\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{3}\right\} \mathrm{PF}_{6}$		1990	
		1998	
		1992	
$\left\{\mathrm{Rh}(\mathrm{CO})\left[\mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{3}\right\}^{3 \mathrm{PF}_{6}}$		15	
\{ $\left.\mathrm{Rh}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\}$ B $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$		1922	
\{ $\left.\mathrm{Rh}(\mathrm{CO})\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{PF}_{6}$		1938	
	2125	2039	
$\left\{\mathrm{Ir}\left(\mathrm{O}_{2}\right)\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$			
$\left.\left.\left\{\mathrm{Rh}^{\left(\mathrm{O}_{2}\right)} \text { [P(} \mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$			852 856

${ }^{\boldsymbol{a}}$ Measured in nujol mulls. ${ }^{b}$ Overlapping anion resonances.
A solution of the complexes $\left[\mathrm{M}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}[\mathrm{M}=\mathrm{Rh}$ or $\mathrm{Ir} ; \mathrm{L}=$ $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ or $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$], in acetone reacts rapidly with air to give stable oxygen adducts, $\left[\mathrm{M}_{\left(\mathrm{O}_{2}\right)} \mathrm{L}_{4}\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$, which can be precipitated from solution by the addition of methanol. A decomposition of this type in solution has also been reported for a ruthenium carbonyl complex ${ }^{3}$.

These oxygen derivatives, with the exception of $\left\{\operatorname{Ir}\left(\mathrm{O}_{2}\right)\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$, are more readily prepared, however, by treating the cyclooctadiene complexes $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{MCl}\right]_{2}$ [$\mathrm{M}=\mathrm{Rh}^{4}$ or Ir$]$, with the ligands, L , in hot methanol, in air and precipitating the adduct
 the cyclooctene complex $\left[\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} \mathrm{IrCl}\right]_{2}$ was used in place of $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{IrCl}\right]_{2}$ in the above reactions.

The structures proposed for the complexes I-IV (Fig.1) are based upon their ${ }^{1} \mathrm{H}$ NMR spectra (Table 2). For structures I and II their ${ }^{1} \mathrm{H}$ NMR spectra were identical with those previously reported for these complexes (see ref. 1). The proton NMR spectrum of III consists of two sharp singlets in the ratio of $1 / 3$ which are ascribed to the methyl groups on the arsine ligands L_{1} and L_{2}, respectively. For IV $(M=I r)$, the methyl resonances of the mutually cis-phosphines (L) in the salt $\left\{\operatorname{Ir}\left(\mathrm{O}_{2}\right)\left[\mathrm{P}_{\left.\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \text { were observed }}\right.\right.$ as a sharp doublet and those on the mutually trans-phosphines (L^{\prime}) as a sharp triplet, consistent ${ }^{5}$ with the structure proposed. The corresponding arsine complex $\left\{\operatorname{lr}\left(\mathrm{O}_{2}\right)\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \quad \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ contains two sharp singlets in the ratio of $1 / 1$ corresponding to the methyl resonances of the arsine ligands L and L '.

(I)

(II)

(III)

(五)

Fig.1. Proposed stereochemistry for the rhodium and iridium complexes. I and II, $\mathrm{I}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{III}, \mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$; IV, $\mathrm{M}=\mathrm{Rh}^{4}$ and $\mathrm{Ir}, \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (These oxygen complexes can also be envisaged as octahedral MIII salts.)

TABLE 2
${ }^{1}$ H NMR DATA ON SOME RHODIUM AND IRIDIUM SALTS

${ }^{a}$ Separation of the outer peaks of the $1 / 2 / 1$ triplet 6; s, singlet; d, doublet; t, triplet. Ratios of peaks in brackets.

A few oxidative addition reactions to some of these complexes have been
 neutral complex, $\left\{\mathrm{RhI}_{3}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{2}\right\}$, while the corresponding reaction involving $\left\{\mathrm{Ir}\left(\mathrm{O}_{2}\right)\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{4}\right\} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ similarly yields a neutral product, $\mathrm{IrI}_{3}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]_{3}$.

REFERENCES

1 A.J. Deeming and B.L. Shaw, J. Chem Soc., A, (1970) 3356 and references therein.
2 Mu. Church, M. Mays, R.N.E. Simpsonand E.Stefanidi. I. Chem Socm A. (1970) 2909.
3 K.R. Laing and W.R. Roper, Chem. Commun., (1968) 1556.
4 L.M. Haines, Inorg. Chem, submitted for publication.
5 J.M. Jenkins and B.L. Shaw, J. Chem. Soc., A, (1966) 1407.
6 R.K. Harris, Can. J. Chem., 42 (1964) 2275.
J. Organometal. Chem, 30 (1971) C81-C83

